EBH- Tutorial
Sickle cell anemia
Sara T O Saad
• A 20 yo afro-descendent man, from Bahia state, was referred to the outpatient clinic of UNICAMP with hypothesis of sickle cell anemia. Clinical exam showed moderate jaundice and pallor and a leg ulcer in the right side. Precordial systolic murmur was detected in the heart examination. BP= 110 x 70 mmHg

• He referred hepatitis diagnosis at 12 yo. In the last year, he had been admitted to the Emergency Room, for 3 days, due to abdominal pain. His parents and all 7 sisters and brothers were healthy

• He had been working since 15 yo, as a barman, cook assistant or door-keeper
Laboratory exams

- Hb 8.7 g/dL, RBC 2.45 x 10^{12}/L, MCV=99fl, MCH= 36.7pg. reticulocytes- 14,0% WBC= 11.6 x 10^9/L, Platelets= 580 x 10^9/L

Blood smear showed numerous sickle RBC, RBC with Howel Jolly bodies, poikylocytosis.

- Electrophoresis of Hb= HbS + HbA2 + Hb F
 Hb A2= 2.2%; HbF = 10.5%
 - Haplotype = BEN/BEN
 - alpha thal-negative

- LDH= 1500U/L
Adverse effects prediction

Miller et al, NEJM 2000

<table>
<thead>
<tr>
<th>Decrease</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ Hemoglobin</td>
<td>↑ Hemoglobin</td>
</tr>
<tr>
<td>↓ Hb F</td>
<td>↑ Leukocytes</td>
</tr>
<tr>
<td>↑ Painful crisis</td>
<td>Alpha-thal (+)</td>
</tr>
<tr>
<td>Alpha-thal (-)</td>
<td>Acute anemia</td>
</tr>
<tr>
<td>LDH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death, stroke, leg ulcer</td>
</tr>
<tr>
<td>Death, ACS, Osteonecrosis</td>
</tr>
<tr>
<td>Death, ACS, leg ulcer</td>
</tr>
<tr>
<td>Death, ACS</td>
</tr>
<tr>
<td>Osteonecrosis</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Death, Osteonecrosis</td>
</tr>
<tr>
<td>Death, stroke</td>
</tr>
<tr>
<td>Pulmonary hypertension, leg ulcer, priapism, stroke</td>
</tr>
</tbody>
</table>
Haplotypes in Brazilian populations

- **São Paulo**: 45% CAR/Ben, 11% Ben/Ben; 34% CAR/CAR,

- **Bahia**: 46%-55% CAR/Ben, 21%-20% Ben/Ben, 21%-16% CAR/CAR, 11%-9% other

- **Pernambuco**: high frequency of CAR. Low frequency of tBenin.

- **Pará**: 66% CAR, 22% Benin, 11% Senegal, 1% Cameroon

- **Ben/CAR predominates in São Paulo and Bahia**
Hematologic Values and Fetal Hemoglobin: Interaction of α-Thalassemia-2 with βs-Gene-Cluster Haplotypes

<table>
<thead>
<tr>
<th></th>
<th>HbF (%)</th>
<th>α α / α α</th>
<th>α -/ α α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR/CAR</td>
<td>4.9 ± 2.9</td>
<td>2.8 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>CAR/Benin</td>
<td>7.3 ± 4.7*</td>
<td>6.5 ± 3.9</td>
<td></td>
</tr>
<tr>
<td>Benin/Benin</td>
<td>8.3 ± 3.0*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HbF (g/dl)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>α α / α α</td>
<td>α -/ α α</td>
</tr>
<tr>
<td>CAR/CAR</td>
<td>0.37 ± 0.22</td>
<td>0.32 ± 0.28</td>
<td></td>
</tr>
<tr>
<td>CAR/Benin</td>
<td>0.60 ± 0.47*</td>
<td>0.53 ± 0.29</td>
<td></td>
</tr>
<tr>
<td>Benin/Benin</td>
<td>0.64 ± 0.21*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05"
Laboratory exams

• Unconjugated bilirubin = 6.34 mg% (n < 0.8)
 Conjugated bilirubin = 1.12 mg% (n < 0.4)
• Hepatitis B, C and HIV- negative serology

• Chest XR- cardiomegaly
• Abdominal US- atrophy of spleen, hepatomegaly and cholelithiasis
Laboratory exams

- Creatinine clearance = 219 ml/min
- Serum sodium = 134 mEq/L
- Serum potassium = 4.6 mEq/L

- Urine
 - Density = 1010
 - pH = 5.5
 - Protein - +
 - Urobilinogen - +
 - Bilirubin +
 - Hemoglobin +
Kidney lesions

- Early and severe sickling in kidney
- Begin in the first year and continue for all life
Renal medullary

Hypoxia, hypertonicity, acidosis

\textbf{vasa recta obliteration}

Hyposthenuria

Ischemy of kidney papilla and medullary

Infarction and fibrosis
Glomeruli

Pathogenesis is not completely known

- Sickle RBC phagocytosis by mesangial cells
- Nephritis by immune complex (autoantigens discharged during ischemy)
- Glomerular lesion due to hyperfiltration

Glomerular hypertrophy

- Pathological findings similar to arterial hypertension
- Good Response to ACEi
Follow up 1983-1988

- 2mg of Folic acid/day was prescribed

- In 1985, a second leg ulcer, in the left side, appeared. For leg ulcer many treatments were used as follows:
 - Cleanliness and Unna boot
 - Neomicin for local infection
 - Skin Graft
 - Rest and RBC transfusion

 The leg ulcer was resolved in 4 years (1987)
17% SS patients

- 12 y.o.
- Related to anemia
 - Hypoxia
 - Hyperdynamic flow
 - Hemolysis- ↓NO
Follow up 1990

• Patient referred frequently abdominal pain with colics and vomiting after meals.
 – Ultrasonography
 • Cholelithiasis
 • Enlargement of the liver

• Cholecistectomy was indicated

• Before surgery
 – Acute cholecystitis - treated with antibiotics.
 – Thrombosis in the left arm - treated with heparin and oral anticoagulant
Cholelithiasis and choledocholithiasis

- Due to increased excretion of bilirubin
 - More frequent in homozygotes SS
 - Increase prevalence with age

- Cholecystectomy prevents symptoms
- Surgery after biliary crisis, but not in the acute episode.
- Gilbert Syndrome is a risk factor

Laboratory and clinical data of patients with sickle cell anemia subdivided by their UDP-glucuronosyltransferase 1 (UGT1A) genotype

<table>
<thead>
<tr>
<th>UGT1A genotype</th>
<th>Mean serum total bilirubin levels (mg/dl)</th>
<th>Mean serum unconjugated bilirubin levels (mg/dl)</th>
<th>Frequency of cholelithiasis (%)</th>
<th>Frequency of cholecystectomy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA₆/TA₆</td>
<td>3.33 ± 0.87</td>
<td>2.42 ± 1.62</td>
<td>58.8 (10/17)</td>
<td>5.5 (1/18)</td>
</tr>
<tr>
<td>TA₆/TA₇</td>
<td>3.95 ± 1.07</td>
<td>3.12 ± 0.94</td>
<td>70.0 (14/20)</td>
<td>36.8 (7/19)</td>
</tr>
<tr>
<td>TA₇/TA₇</td>
<td>6.88 ± 1.52</td>
<td>6.03 ± 1.49</td>
<td>80.0 (8/10)</td>
<td>10.0 (1/10)</td>
</tr>
</tbody>
</table>
Follow up 1990

- Surgery was cancelled
- RBC transfusion was indicated. Patient developed severe reduction of hemoglobin
 - Hb= 5.6g/dL; MCV= 100fl; MCH = 31.7 pg; WBC= 12x 10^9/L, Retcs 800 x 10^9/L, Platelets= 1006 x 10^9/L
- **UGT1A1** promoter polymorphism (Gilbert S.)- Homozygote
- DAT+, Elution test +, auto-Ac Ig-G w/o specificity
- 2 months after - DAT negative
- Serum: anti-C and anti-e (IgG), auto anti-I (IgM)
Follow up-1996

- Moderate increase of left ventricle and atrium dimensions
- Mild insufficiency of mitral and tricuspid valves
- Tricuspid regurgitation < 2.5m/s
- Pulmonary arterial pressure=25 mmHg
- Ferritin = 156 ng/mL
- Leg ulcer in the left side after trauma
- LDH= 1427 U/L
- Refused Hydrea due to leg ulcer
Cardiac complications

• Hypertrophy of left chambers due to anemia

• Hypertrophy of right chambers due to pulmonary hypertension
Follow up 1998

- US= chronic liver disease
- Unconjugated bilirubin 11.9mg/dL (n<0.8)
- Conjugated bilirubin 1.6md/dL (n<0.4)
- AST= 73 U/L (n<37), ALT= 15 U/L (n<40)
- Alkaline phosphatase 301 U/L (n<306)
- GGT 139U/L (n<32)
- BUN=24 mg/dL
- Serum creatinine= 0.48 mg/dL
- Glomerular rate filtration= 126mL/min/1.73m2
- Uric acid= 6.5 mg/dL (N< 7mg/dL)
Follow up – 2004

- Cholecystectomy and liver biopsy performed
- RBC transfusion – 3U – pre-surgery

Liver – normal lobular architecture, congestion, severe chronic cholecistopathy

9 days after transfusion patient developed a severe hemolytic anemia and hemoglobinuria. Hb = 3.9g/dL - retics = 60 x 10⁹/L

- Post – transfusional hyperhemolytic syndrome

DAT +, serum: anti Jkb and anti C
ALT- 43 (n<37); AST= 24 (n<40)
Unconjugated bilirubin= 1.7mg/dL (n<0.8)
Conjugated bilirubin= 2.3 mg/dL (n<0.2)
LDH= 3087 U/L
Follow up – 2004

- Chest pain, fever
- X-R- bilateral pleural effusion –hemorrhagic
- Echocardiography- cardiomegaly, mitral insufficiency, pulmonar hypertension (PAP= 47 mmHg). EF= 74%
- CT high resolution=multiple lung infarctions, obstruction of microcirculation
- Prescribed Hydrea . Discharged 6 months after due to leg ulcer
Follow up – 2006

- Bone densitometry: osteoporosis
- Hb=6.2g/dL, WBC= 6.2 x 10^9/L, Plt= 308 x 10^9/L
- Ret= 343 x 10^9/L
- K= 5.7mEq/L, Na= 138 mEq/L
- Creat= 0.56mg/dL, Urea= 18 mg/dL
- Clear EDTA^{CR} = 114mL/min
Bone densitometry in 65 brazilian adult patients with SCD (20 -64y.o)
Baldanzi et al, 2011

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>12</td>
<td>18.5%</td>
</tr>
<tr>
<td>Osteopenia</td>
<td>37</td>
<td>57.0%</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>16</td>
<td>24.5%</td>
</tr>
</tbody>
</table>
Correlations

<table>
<thead>
<tr>
<th>BMD X Retics</th>
<th>BMD X GFR</th>
</tr>
</thead>
</table>
| **Osteopenia** $p = \text{n.s}$
Osteoporosis $p < 0.001$ | **Osteopenia** $p = 0.08$
Osteoporosis $p = 0.02$ |
| **BMD X LDH** | |
| **Osteopenia** $p = 0.04$
Osteoporosis $p = 0.005$ | |
Adewoye et al. 2008

Vitamina D and calcium

- Treatment of 14 patients with Vit D and calcium for one year
- Improvement in densitometry

Vit D deficiency:
- Afro-descendents need 5 to 10 x more sun exposition than whites for production of same amount of Vit D
Follow up – 2006

- Echocardiography = diastolic left ventricle dilation, pulmonar hypertension, mitral and tricuspid insufficiency
- Col = 92mg/dL, Triglicerides = 93 mg/dL
- HDL = 37 mg/dL, LDL = 19 mg/dL
- Microalbuminuria = 87mg/g creatinine
- Prescribed ACEi + Hydrea + EPO
Albuminuria in SCD
Early predictor of glomerular damage

5mg/d Enalapril and albuminuria in SCD

Enalapril effect on renal function in SCD

TABLE

Clinical and Laboratory Data (Mean ± SD) for Patients With Sickle Cell Anemia Before and During Enalapril Treatment and 2 Years After Discontinuation of the Drug (Follow-Up)

<table>
<thead>
<tr>
<th></th>
<th>Controls (n = 10)</th>
<th>Sickle Cell Anemia Patients (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After 6 Months</td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td>86.9 ± 8.6</td>
<td>70.4 ± 5.5 †</td>
</tr>
<tr>
<td>Ks (mEq/L)</td>
<td>4.5 ± 0.2</td>
<td>5.0 ± 0.6</td>
</tr>
<tr>
<td>FEK (%)</td>
<td>4.2 ± 1.1</td>
<td>2.1 ± 1.0 †</td>
</tr>
<tr>
<td>FELi (%)</td>
<td>28.8 ± 9.1</td>
<td>10.9 ± 6.16 †</td>
</tr>
<tr>
<td>FENa (%)</td>
<td>0.9 ± 0.2</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>CreatCl (mL/min)</td>
<td>109 ± 19</td>
<td>178 ± 58 †</td>
</tr>
</tbody>
</table>

†Significantly lower (P = 0.004) when compared to before or follow-up values.

‡P = 0.002 vs. controls.

§P = 0.014 vs. controls.

$P = 0.001 vs. controls.

Significantly different when compared to controls.

MAP = mean arterial pressure; Ks = serum potassium; FEK = fractional excretion of potassium; FELi = fractional excretion of lithium; FENa = fractional excretion of sodium CreatCl = creatinine clearance.

iACE in Cardiac remodelling

- ACEi successfully decreased cardiac remodelling in patients with cardiac dysfunction after acute myocardial infarction.

Enalapril Therapy in Cardiac Remodelling of Sickle Cell Disease Patients Carmen S. P. Lima 1,2, Osvaldo M. Ueti 2, Adriana A. Ueti 2, Kleber G. Franchini 2, Fernando F. Costa 1,2, Sara T. O. Saad. *Acta Cardiologica* 2008 Oct;63(5):599-602
Follow up – 2007

- Hb = 5.8-6.4g/dL; MCV > 110fl, Rets 170-220x10^9/L.
- Clear EDTACR = 101mL/min
- LDH = 1691 U/L
- Microalbuminuria = 226mg/g creatinine
- Increase ACEi dose
- Hydrea + EPO + Calcium + Vit D3
Follow up – 2008

- Microalb = 19 mg/g
- Ferritin = 321 ng/mL Transferrin sat = 55%
- Hb = 8.1 g/dl, WBC = 7.29 x 10^9/l (2.71 gran)
- Plt = 396 x 10^9/L, ret = 250 x 10^9/L, HbF = 23.3%
- LDH = 884 U/L
- Creatinine = 0.67 mg/dL, U = 29 mg/dL
- Leg ulcer on the left side – Topical autologous Platelet Rich Plasma – complete cicatrization
- Hydrea, EPO, ACE
Follow up 2011- EPO + HU + ACE

- 48 y.o – PA = 110X60 mmHg

Hb= 8.56 g/dl, Neutrophils-5 x10^9/L,
Platelets 483 x 10^9/L,
HbF= 15.3%
LDH= 1174U/L
Microalb= 37.84 mg/g
Creatinine= 0.53mg/dL, U= 15mg/d
- Hydrea –
Maximal tolerated dose
prevention of organ damage

- Neutrophils ~ 2 x 10^9/L
- Platelets > 100 x 10^9/L
- Reticulocytes > 50 x 10^9/L
Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea.
Hankins JS, Helton KJ, McCarville MB, Li CS, Wang WC, Ware RE.

PATIENTS AND METHODS:
Retrospective study

RESULTS:
43 children had spleen function measured both at baseline and on therapy. After a median of 2.6 years (range, 0.2-8.6 years) of hydroxyurea at maximum tolerated dose (MTD), six patients (14%) completely recovered splenic function and two (5%) had preserved splenic function. These eight children had a greater hemoglobin (Hb) concentration on hydroxyurea therapy than those without splenic function (9.1 vs. 8.6 gm/dl, P = 0.01). Of 25 children with brain MRI/MRA studies performed before initiating hydroxyurea and on therapy, 24 (96%) had no change in brain ischemic lesions compared with pre-treatment studies, after a median of 2.9 years of treatment.
Conclusion

• Even patients with non-severe SCA may have severe complications
• Intervention: early Hydrea, Bone Marrow Transplantation?
• Hepatobiliary complications may be severe in Gilbert Syndrome homozygotes
 Intervention : early surgery
Conclusions

• Prevention of nutritional deficiency of Calcium and Vit. D (infancy and adolescence)
• iACE for kidney and heart function improvement
• EPO + Hydrea increase Hb levels and may substitute RBC transfusions
• Topical Autologous Platelet Rich Plasma for leg ulcer treatment